Compared to fluorescent bulbs, introduced at the 1939 World's Fair, advantages claimed for LED light bulbs[2] are that they contain no mercury (unlike a Compact fluorescent lamp or CFL), that they turn on instantly, and that lifetime is unaffected by cycling on and off, so that they are well suited for light fixtures where bulbs are often turned on and off. LED light bulbs are also less apt to break.
White-light light-emitting diode lamps have the traits of long life expectancy and relatively low energy use. The LED sources are compact, which gives flexibility in designing lighting fixtures and good control over the distribution of light with small reflectors or lenses. Because of the small size of LEDs, control of the spatial distribution of illumination is extremely flexible,[3] and the light output and spatial distribution of a LED array can be controlled with no efficiency loss.
LED lamps have no glass tubes to break, and their internal parts are rigidly supported, making them resistant to vibration and impact. With proper driver electronics design, an LED lamp can be made dimmable over a wide range; there is no minimum current needed to sustain lamp operation.
LEDs using the color-mixing principle can emit a wide range of colors by changing the proportions of light generated in each primary color. This allows full color mixing in lamps with LEDs of different colors.[4] In contrast to other lighting technologies, LED emission tends to be directional (or at least lambertian). This can be either an advantage or a disadvantage, depending on the requirements of the application. For applications where non-directional light is required, either a diffuser is used, or multiple individual LED emitters are used to cover different directions.